Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/tak-901.html Different machine learning methods were applied and evaluated to predict the local failure outcome at pre-treatment. The optimum biomarker consisting of two features in conjunction with an AdaBoost with decision tree could predict the local failure outcome with 71% accuracy on an independent test set (20 patients, 31 lesions). This study is a step forward towards prediction of radiotherapy outcome in brain metastasis using quantitative imaging and machine learning.Metal artifacts are very common in CT scans since metal insertion or replacement is performed for enhancing certain functionality or mechanism of patient's body. These streak artifacts could degrade CT image quality severely, and consequently, they could influence clinician's diagnosis. Many existing supervised learning methods approaching this problem assume the availability of clean images data, images free of metal artifacts, at the part with metal implant. However, in clinical practices, those clean images do not usually exist. Therefore, there is no support for the existing supervised learning based methods to work clinically. We focus on reducing the streak artifacts on the hip scans and propose a convolutional neural network based method to eliminate the need of the clean images at the implant part during model training. The idea is to use the scans of the parts near the hip for model training. Our method is able to suppress the artifacts in corrupted images, highly improve the image quality, and preserve the details of surrounding tissues, without using any clean hip scans. We apply our method on clinical CT hip scans from multiple patients and obtain artifact-free images with high image quality.In clinical practice, doctors usually use computed tomography angiography (CTA) to examine lower extremity atherosclerotic occlusive (ASO). Conveniently and accurately locating occlusive superficial femoral artery (SFA) which is difficult to extract from CTA
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत