Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/2-3-cgamp.html Hydrochars are materials with a promising future, as their high carbon content and porosity renders them suitable for uses including peat substitutes, soil remediation and carbon adsorbent precursors. Combining hydrothermal carbonization and pyrolysis offers the prospect to provide advanced materials with a higher porosity and carbon content. This approach would mitigate drawbacks associated to hydrochars, including phytotoxicity. This research studied the influence of pyrolysis temperature and heating time on the resulting properties of chars made from hydrothermal carbonization of biomass wastes at 200 °C for 4 h and compared them to biochars that had not received any prior hydrothermal carbonization. Interestingly, hydrochar followed by pyrolysis was able to result in phytostimulation, while, when only pyrolysis was carried out, phytotoxicity was eliminated, but no phytostimulant effect was observed. In addition, the results indicated that the higher and longer the pyrolysis temperature (from 350 to 550 °C) and duration time (from 1 to 5 h), respectively, the more microporosity was generated, while phytotoxicity was reduced. In addition, aromaticity and thermal stability significantly increased with pyrolysis treatment. Consequently, hydrochars improve their properties and offer more potential for environmental applications after a pyrolysis post-treatment. Landfills are the third largest anthropogenic source of the greenhouse gas methane worldwide. In the upper portions of landfill covers, methane is oxidized aerobically by microorganisms to form the less-potent greenhouse gas carbon dioxide; however, because of the low permeability of oxygen, no aerobic oxidation occurs in deeper portions of the cover. Therefore, the goal of this study was to enhance anaerobic oxidation of methane (AOM) in the deeper parts of landfill covers, to increase overall methane removal, via addition of electron acceptors besides oxyge
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत