Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/AZD2281(Olaparib).html For overall water splitting, with NiFe LDH/NiCoP@NC/NF as the anode and NiCoP@NC/NF as the cathode, the assembled two-electrode system only required 1.54 V to obtain a stable current density of 10 mA cm-2 in 1 M KOH for at least 40 h. This research provided a simple and facile way to develop non-noble-metal oxygen evolution catalysts for replacing high-cost noble metal catalysts.We compare the predictions of our recently developed statistical molecular fragmentation (SMF) model with experimental results from plasma induced hydrocarbon decay. The SMF model is an exactly solvable statistical model, able to calculate the probabilities for all possible fragmentation channels as a function of the deposited excitation energy. The weights of the channels are calculated from the corresponding volume of the accessible phase space of the system, taking into account all relevant degeneracies, symmetries and density functions. An experiment designed to study the abatement of propene in N2 using a photo-triggered discharge producing a homogeneous plasma at sub-atmospheric pressure was also performed. Using a 0D model that simulates the complex chemical kinetics in the plasma, it was possible to assess the percentages of the original parent hydrocarbon's fragmentation channels based on the detected species. These results were compared to those obtained from the SMF model. Previous plasma induced hydrocarbon fragmentation experiments for ethene, ethane and propane, were also compared to the predictions of the SMF model. For energies below that of metastable dinitrogen (i.e. below 6.17 eV and 8.4 eV), the SMF model and the experimental fragmentation channels coincide. This study allows one to draw conclusions both on the range of excitation energies transferred to the parent hydrocarbon molecules during plasma discharge and on the probability of the dynamical coupling of two H atoms from neighbouring carbon atoms to form H
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत