Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/ldn-212854.html ired, the skin dose could be carefully augmented via a bolus or beam spoiler. To predict the impact of optimization parameter changes on dosimetric plan quality criteria in multi-criteria optimized volumetric-modulated-arc therapy (VMAT) planning prior to optimization using machine learning (ML). A data base comprising a total of 21,266 VMAT treatment plans for 44 cranial and 18 spinal patient geometries was generated. The underlying optimization algorithm is governed by three highly composite parameters which model a combination of important aspects of the solution. Patient geometries were parametrized via volume- and shape properties of the voxel objects and overlap-volume histograms (OVH) of the planning-target-volume (PTV) and a relevant organ-at-risk (OAR). The impact of changes in one of the three optimization parameters on the maximally achievable value range of five dosimetric properties of the resulting dose distributions was studied. To predict the extent of this impact based on patient geometry, treatment site, and current parameter settings prior to optimization, three different ML-models were trained and tested. Precision-recall curves, as well as the area-under-curve (AUC) of the resulting receiver-operator-characteristic (ROC) curves were analyzed for model assessment. Successful identification of parameter regions resulting in a high variability of dosimetric plan properties depended on the choice of geometry features, the treatment indication and the plan property under investigation. AUC values between 0.82 and 0.99 could be achieved. The best average-precision (AP) values obtained from the corresponding precision/recall curves ranged from 0.71 to 0.99. Machine learning models trained on a database of pre-optimized treatment plans can help finding relevant optimization parameter ranges prior to optimization. Machine learning models trained on a database of pre-optimized treatment plans can help f
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत