Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/vx-561.html Prymnesium parvum is a bloom forming haptophyte that has been responsible for numerous fish kill events across the world. The toxicity of P. parvum has been attributed to the production of large polyketide compounds, collectively called prymnesins, which based on their structure can be divided into A-, B- and C-type. The polyketide chemical nature of prymnesins indicates the potential involvement of polyketide synthases (PKSs) in their biosynthesis. However, little is known about the presence of PKSs in P. parvum as well as the potential molecular trade-offs of toxin biosynthesis. In the current study, we generated and analyzed the transcriptomes of nine P. parvum strains that produce different toxin types and have various cellular toxin contents. Numerous type I PKSs, ranging from 37 to 109, were found among the strains. Larger modular type I PKSs were mainly retrieved from strains with high cellular toxin levels and eight consensus transcripts were present in all nine strains. Gene expression variance analysis revealed potential molecular trade-offs associated with cellular toxin quantity, showing that basic metabolic processes seem to correlate negatively with cellular toxin content. These findings point towards the presence of metabolic costs for maintaining high cellular toxin quantity. The detailed analysis of PKSs in P. parvum is the first step towards better understanding the molecular basis of the biosynthesis of prymnesins and contributes to the development of molecular tools for efficient monitoring of future blooms.Large rivers are important terrestrial dissolved organic matter (DOM) sources to marginal seas, and dissolved organic nitrogen (DON) plays an essential role in DOM cycling. The Yellow River ranks as the fifth largest river (in length) in the world and is well-known for its high dissolved inorganic nitrogen (DIN) concentration and relatively low DON concentration, leading to extreme measuring unc
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत