Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/turi.html A novel Fabry-Perot (F-P) demodulation technique based on least square fitting for arbitrary reflectivity F-P sensors is proposed. The demodulation method was simulated and analyzed to verify feasibility of the algorithm. Two different finesse F-P interferometers constructed with a reflector bracket were used to make the stability experiments and the stepping experiments. The results show that the demodulation technique can interrogate the cavity length of F-P interferometers with different fineness in a wide range, and the demodulation error is less than 12 nm.Numerical implementations of Mie theory make extensive use of spherical Bessel functions. These functions are, however, known to overflow/underflow (grow too large/small for floating point precision) for orders much larger than the argument. This is not a problem in applications such as plane wave excitation, as the Mie series converge before these numerical problems arise. However, for an emitter close to the surface of a sphere, the scattered field in the vicinity of the sphere is expressed as slowly converging series, with multipoles up to order 1000 required in some cases. These series may be used to calculate experimentally relevant quantities such as the decay rate of an emitter near a sphere. In these cases, overflow/underflow prevents any calculation in double precision using Mie theory, and alternatives are either computationally intensive (e.g., arbitrary precision calculations) or not accurate enough (e.g., the electrostatics approximation). We present here a formulation of Mie theory that overcomes these limitations. Using normalized Bessel functions where the large growth/decay is extracted as a prefactor, we re-express the Mie coefficients for scattering by spheres in a normalized form. These normalized expressions are used to accurately compute the series for the electric field and decay rate of a dipole emitter near a spherical surface, in cases w
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत