Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/th5427.html Under optimal conditions, the immunosensor displayed a wide linear range from 0.0001 to 100 U mL-1 with an ultralow limit of detection of 53.5 μU mL-1 (S/N = 3) for carbohydrate antigen 19-9. Considering these advantages, namely self-producing H2O2 and easy operation, this strategy paves a new way to design other novel sensors.Inorganic phosphate (Pi)-sensing is a key application in many disciplines, and biosensors emerged as powerful analytic tools for use in environmental Pi monitoring, food quality control, basic research, and medical diagnosis. Current sensing techniques exploit either electrochemical or optical detection approaches for Pi quantification. Here, by combining the advantages of a biological Pi-receptor based on the bacterial phosphate binding protein with the principle of thermophoresis, i.e. the diffusional motion of particles in response to a temperature gradient, we developed a continuous, sensitive, and versatile method for detecting and quantifying free Pi in the subnanomolar to micromolar range in sample volumes ≤10 μL. By recording entropy-driven changes in the directed net diffusional flux of the Pi-sensor in a temperature gradient at defined time intervals, we validate the method for analyzing steady-state enzymatic reactions associated with Pi liberation in real-time for adenosine triphosphate (ATP) turnover by myosin, the actomyosin system and for insoluble, high molecular weight enzyme-protein assemblies in biopsy derived myofibrils. Particular features of the method are (1) high Pi-sensitivity and selectivity, (2) uncoupling of the read-out signal from potential chemical and spectroscopic interferences, (3) minimal sample volumes and nanogram protein amounts, (4) possibility to run several experiments in parallel, and (5) straightforward data analysis. The present work establishes thermophoresis as powerful sensing method in microscale format for a wide range of applications, augmenting
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत