Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/bemnifosbuvir-hemisulfate-at-527.html Hydrogen peroxide (H2O2)-based electrochemical advanced oxidation processes (EAOPs) have been widely attempted for various wastewater treatments. So far, stability tests of EAOPs are rarely addressed and the decay mechanism is still unclear. Here, three H2O2-based EAOP systems (electro-Fenton, photoelectro-Fenton, and photo+ electro-generated H2O2) were built for phenol degradation. More than 97% phenol was removed in all three EAOPs in 1 h at 10 mA·cm-2. As a key component in EAOPs, the cathodic H2O2 productivity is directly related to the performance of the system. We for the first time systematically investigated the decay mechanisms of the active cathode by operating the cathodes under multiple conditions over 200 h. Compared with the fresh cathode (H2O2 yield of 312 ± 22 mg·L-1·h-1 with a current efficiency of 84 ± 5% at 10 mA·cm-2), the performance of the cathode for H2O2 synthesis alone decayed by only 17.8%, whereas the H2O2 yields of cathodes operated in photoelectro-generated H2O2, electro-Fenton, and photoelectro-Fenton systems decayed by 60.0, 90.1, and 89.6%, respectively, with the synergistic effect of salt precipitation, •OH erosion, organic contamination, and optional Fe contamination. The lower current decay of 16.1-32.3% in the electrochemical tests manifested that the cathodes did not lose activity severely. Therefore, the significant decrease of H2O2 yield was because the active sites were altered to catalyze the four-electron oxygen reduction reaction, which was induced by the long-term erosion of •OH. Our findings provided new insights into cathode performance decay, offering significant information for the improvement of cathodic longevity in the future.Metal contamination released from tailings is a global environmental concern. Although phytoremediation is a promising remediation method, its practice is often impeded by the adverse tailing geochemical conditions, whic
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत