Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/ABT-888.html Advanced nanotechnologies for efficient arsenic decontamination remain largely underdeveloped. The most abundant inorganic arsenic species are neutrally-charged arsenate, As(III), and negatively-charged arsenite, As(V). Compared with As(V), As(III) is 60 times more toxic and more difficult to remove due to high mobility. Herein, an electrochemical filtration system was rationally designed for one-step As(III) decontamination. The key to this technology is a functional electroactive carbon nanotube (CNT) filter functionalized with sea urchin-like FeOOH. With the assistance of electric field, CNT-FeOOH anodic filter can in situ transform As(III) to less toxic As(V) while passing through. Then, as-produced As(V) could be effectively sequestrated by FeOOH. The sufficient exposed sorption sites, flow-through design, and filter's electrochemical reactivity synergistically guaranteed a rapid arsenic removal kinetic. The underlying working mechanism was unveiled based on systematic experimental investigations and theoretical calculations. The system efficacy can be adapted across a wide pH range and environmental matrixes. Exhausted CNT-FeOOH filters could be effectively regenerated by chemical washing with diluted NaOH solution. Outcomes of the present study are dedicated to provide a straightforward and effective strategy by integrating electrochemistry, nanotechnology, and membrane separation for the removal of arsenic and other similar heavy metals from water bodies.Environmentally sound disposal of hyperaccumulator harvests is of critical importance to industrialization of phytoremediation. Herein, transformation behaviors and environmental risk of heavy metals were comprehensively examined during subcritical hydrothermal liquefaction of Sedum plumbizincicola. It is concluded that low temperature liquefaction favored resource recovery of heavy oil and hydrochars in terms of higher energy density, improved carbon sequest
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत