Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/dt-061-smap.html Polarization-controlled coherent Raman spectroscopy is used as a high-throughput method to characterize the anisotropic nature of a molecular system, such as the molecular orientation distribution. However, optical birefringence originating from the molecular anisotropy can cause the observed Raman spectrum to be significantly distorted, making it extremely challenging to obtain quantitative information from polarization Raman measurements. Here, the birefringence effect on the signal intensity and the spectral shape of a polarization-controlled coherent anti-Stokes Raman scattering (CARS) is theoretically described using a uniaxially symmetrical model system. Due to the complexity, the effect of phase delay in the incident lights is not considered but only that of the generated CARS signal is considered. A new analytical method is presented to eliminate the birefringence contribution from polarization-controlled CARS data by analyzing polarization intensity profiles and retrieving the resonant Raman susceptibility spectra. This method is tested with two sets of polarization-controlled CARS data simulated with various combinations of symmetries of multiple underlying Raman modes. The analysis result clearly demonstrates that the effect of birefringence can be corrected for polarization-controlled CARS data and the symmetry tensor elements of all underlying Raman modes can be quantitatively characterized.A symmetrical demodulation method is developed for the recovery of dynamic signals. Extrinsic Fabry-Perot interferometers (EFPIs) with different cavity lengths can be interrogated by a same demodulator. In the demodulation technique, three interferometric signals are introduced by selecting three specified laser wavelength, two of the three signals are symmetrical about the third signal. The dynamic signal is recovered by the proposed method from the three interferometric signals. EFPI sensors in a wide cavity len
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत