Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/Wnt.html Single-molecule DNA/RNA sequencing based on single-molecule measurement is a prominent method for higher throughput sequencing. In a previous report, the single-molecule DNA/RNA sequencing method has applied to detect each base-conductance difference in the tunneling current time profiles, and determined the sequence. However, discrimination of identical base lengths has not yet been achieved. The number of the identical contiguous bases has importance in biology because some homopolymers of nucleic acid control gene expression. In this study, we aimed to develop a method for discriminating the length of homopolymer of nucleic acids of adenosine monophosphate (AMP) using a single-molecule sequencing technique. We carried out single-molecule conductance measurements of adenine pentamer, hexamer and heptamer. The single-molecule signals of the oligomers are not distinguishable from current and duration time histograms. The three oligomers were discriminated by our developed machine learning-based analysis with accuracy of 0.54 for a single signal, and 99% for 40 signals. This method will be applied to the single signals and identify the contiguous bases in the sequence and provide new biological insights.Gold nanoparticles (AuNPs) are commonly used in biosensing applications. In this study, AuNPs were synthesized by using reduced bovine serum albumin (rBSA) as the reducing agent. The rBSA conjugated with AuNPs via Au-Sulfur interactions to form rBSA-functionalized AuNPs (rBSA-AuNPs). The interaction of the rBSA moieties on the rBSA-AuNP surface with an anti-BSA antibody (anti-BSA) led to AuNP aggregation, which enabled the successful detection of anti-BSA at a concentration as low as 20 nM through darkfield microscopy (DFM). This study demonstrates the potential applications of protein-functionalized AuNPs in the bioanalysis of substances through DFM.Various cells and tissues are highly organized in vivo by basement membranes (BMs)
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत