https://www.selleckchem.com/products/Cladribine.html These findings provide evidence, for the first time, about the fragments governing PvMSP10 binding to its target cells, thus highlighting the importance of studying them for inclusion in a P. vivax antimalarial vaccine.Autophagy is a critical regulator of cellular survival, differentiation, development, and homeostasis, dysregulation of which is associated with diverse diseases including cancer and neurodegenerative diseases. Transcription factor EB (TFEB), a master transcriptional regulator of autophagy and lysosome, can enhance autophagic and lysosomal biogenesis and function. TFEB has attracted a lot of attention owing to its ability to induce the intracellular clearance of pathogenic factors in a variety of disease models, suggesting that novel therapeutic strategies could be based on the modulation of TFEB activity. Therefore, TFEB agonists are a promising strategy to ameliorate diseases implicated with autophagy dysfunction. Recently, several TFEB agonists have been identified and preclinical or clinical trials are applied. In this review, we present an overview of the latest research on TFEB biology and TFEB agonists.Three new polyene compounds, talacyanols A-C (1-3), along with two known compounds, ramulosin (4) and eurothiocin A (5), were isolated from the marine fungus Talaromyces cyanescens derived from a seaweed Caulerpa sp. Structures of 1-5 were established by one-dimensional and two-dimensional (1D/2D) NMR, HR-ESIMS, and the modified Mosher's methods, as well as comparison with previously reported literature data. All the compounds (1-5) were tested for their in vitro cytotoxic and anti-neuroinflammatory activities. Among them, 1 showed moderate cytotoxic activity against a panel of cancer cell lines (HCT-15, NUGC-3, NCI-H23, ACHN, PC-3, and MDA-MB-231) with GI50 values ranging from 44.4 to 91.6 μM, whereas compounds 2 and 5 exhibited anti-neuroinflammatory effect without cytotoxicity against all th