Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/gsk2643943a.html This study constructs multi-scale coupling information to provide a new perspective for exploring neural interaction. Optimizing peri-operative fluid management has been shown to improve patient outcomes and the use of stroke volume (SV) measurement has become an accepted tool to guide fluid therapy. The Transesophageal Doppler (TED) is a validated, minimally invasive device that allows clinical assessment of SV. Unfortunately, the use of the TED is restricted to the intra-operative setting in anesthetized patients and requires constant supervision and periodic adjustment for accurate signal quality. However, post-operative fluid management is also vital for improved outcomes. Currently, there is no device regularly used in clinics that can track patient's SV continuously and non-invasively both during and after surgery. In this paper, we propose the use of a wearable patch mounted on the mid-sternum, which captures the seismocardiogram (SCG) and electrocardiogram (ECG) signals continuously to predict SV in patients undergoing major surgery. In a study of 12 patients, hemodynamic data was recorded simultaneously using the TED and wearable patch. Signal processing and regression techniques were used to derive SV from the signals (SCG and ECG) captured by the wearable patch and compare it to values obtained by the TED. The results showed that the combination of SCG and ECG contains substantial information regarding SV, resulting in a correlation and median absolute error between the predicted and reference SV values of 0.81 and 7.56 mL, respectively. This work shows promise for the proposed wearable-based methodology to be used as an alternative to TED for continuous patient monitoring and guiding peri-operative fluid management. This work shows promise for the proposed wearable-based methodology to be used as an alternative to TED for continuous patient monitoring and guiding peri-operative fluid management.In hyp
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत