Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/lxs-196.html Cyanobacteria are globally important primary producers and nitrogen fixers. They are frequently limited by iron bioavailability in natural environments that often fluctuate due to rapid consumption and irregular influx of external Fe. Here we identify a succession of physiological changes in Synechocystis sp. PCC 6803 occurring over 14-16 days of iron deprivation and subsequent recovery. We observe several adaptive strategies that allow cells to push their metabolic limits under the restriction of declining intracellular Fe quotas. Interestingly, cyanobacterial populations exposed to prolonged iron deprivation showed discernible heterogeneity in cellular auto-fluorescence during the recovery process. Using FACS and microscopy techniques we revealed that only cells with high auto-fluorescence were able to grow and reconstitute thylakoid membranes. We propose that ROS-mediated damage is likely to be associated with the emergence of the two subpopulations, and, indeed, a rapid increase in intracellular ROS content was observed during the first hours following iron addition to Fe-starved cultures. These results suggest that an increasing iron supply is a double-edged sword - posing both an opportunity and a risk. Therefore, phenotypic heterogeneity within populations is crucial for the survival and proliferation of organisms facing iron fluctuations within natural environments.l-rhamnose is found in nature mainly as a component of structural plant polysaccharides and can be used as a carbon source by certain microorganisms. Catabolism of this sugar in bacteria, archaea and fungi occurs by two routes involving either phosphorylated or non-phosphorylated intermediates. Unlike the corresponding pathway in yeasts, the metabolic details of the non-phosphorylated pathway in filamentous fungi are not fully defined. The first three genes (lraA, lraB and lraC) of the non-phosphorylated pathway in Aspergillus nidulans have recentl
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत