Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/valproic-acid.html Combined with frontier electron density, the degradation pathway was deduced as follows destruction of azo bond, substitution of •OH, dehydrogenation and oxidation, opening-ring and mineralization. In EIEL-PEF, the concentration of oxalic acid and oxamic acid reached the maximum value 9.2 and 1.5 mg L-1 at 60 and 90 min, respectively. The photolysis of N-intermediates produced NH4+-N was released in more proportion than NO3--N and oxamic acid-N. The study indicated that PEF system has the potential to remove organic pollutants in aquatic environments. Catalyzed H2O2 propagations (CHP) have demonstrated great potential in the remediation of chlorinated aliphatic hydrocarbons (CAHs) like trichloroethene (TCE) contaminated groundwater. However, the importation of highly unstable H2O2 into subsurface environment remains challenging. In this work, the in-situ H2O2 generation reaction between glucose oxidase (GOD) and glucose was applied in combination with Fe(II) to form the modified Fenton system (GMFs) and its performance in TCE oxidative degradation was investigated. The influence of reactant concentration as well as environmental factors like temperature and pH on the kinetics of TCE oxidation in GMFs were studied. At optimized conditions, about 78% TCE were removed within 8 h in GMFs, which remained effective over the temperature range of 15-30 °C and pH range of 3.6-6.0 (in acetate buffer). The in-situ H2O2 and OH generation capacity of GMFs were further investigated to elucidate their functional mechanism on TCE oxidation. Intermediate and product analysis indicated the near-complete release of chloride ion by TCE oxidation with few organic chlorinated intermediates detected. This work reveals the potential of GMFs for CAHs contaminated groundwater remediation through in-situ generation of reactive oxygen species. This research evaluated the effect of changing feed composition on the performances of a convent
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत