Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/Temsirolimus.html Immuno-precipitation assays indicate that RNF181 associates with ERα and promotes its stability possibly via inducing ERα K63-linked poly-ubiquitination. In conclusion, our data implicate a non-genomic mechanism by RNF181 via stabilizing ERα protein controls ERα target gene expression linked to breast cancer progression.Snail is a master inducer of epithelial-mesenchymal transition (EMT) and metastasis, however, Snail protein is labile and is quickly degraded through the predominate ubiquitination-mediated proteasome pathway. Deubiquitinases (DUBs) can counteract the Snail degradation process to maintain high level of Snail protein in cancer cells. In this study, we screened a cDNA library containing 79 DUBs, and discovered that a panel of DUBs consisting of USP13, USP28, USP29, USP37, OTUD6A, and DUB3 can markedly stabilize Snail protein, with USP29 displaying the strongest activity to prevent Snail degradation. Mechanistically, USP29 enhances the interaction of Snail and SCP1, resulting in simultaneous dephosphorylation and deubiquitination of Snail and thereafter cooperative prevention of Snail degradation. Biologically, ectopic expression of USP29 promotes gastric cancer cell migration, and depletion of Snail abolishes USP29-mediated cell migration; and USP29 can be induced by major EMT and metastatic inducing factors such as TGFβ, TNFα, and hypoxia. More importantly, high expression levels of Snail, USP29, and SCP1 are associated with poor survival and prognosis. Collectively, these data indicate that Snail is a crucial substrate for USP29 to promote cell migration and USP29/SCP1 complex may be new therapeutic targets to treat metastatic cancer.Wnt signaling dysregulation promotes tumorigenesis in colorectal cancer (CRC). We investigated the role of PTPRF, a receptor-type tyrosine phosphatase, in regulating Wnt signaling in CRC. Knockdown of PTPRF decreased cell proliferation in patient-derived primary colo
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत