Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/MEK.html The heart rate in humans is regulated by the autonomic nervous system, which modulates the frequency of heart contractions, resulting in heart rate variability (HRV). Therefore, to assess the activity of the autonomic nervous system, which contains important information for medical diagnostics, methods based on the analysis of interbeat interval variability are often used. This approach does not require the use of invasive methods for measuring the signals of the autonomic nervous system, but its accuracy is an open question. Using mathematical modeling, we investigate the possibility of extracting the signal of frequency modulation of the heartbeats from the electrocardiogram (ECG) signal and conduct a detailed comparison of the extracted signal with the real modulating signal. Since the quality of extraction of the signal of frequency modulation from the ECG depends on the method of demodulation, we compare two different approaches. One is based on the detection of the main oscillation rhythm and its bandpass filtering, and the other on the heterodyning technique. It is shown that low-frequency (LF) and high-frequency (HF) oscillations in HRV associated, respectively, with sympathetic and parasympathetic modulation by the autonomic nervous system, in the general case, significantly differ from the signals of frequency modulation of the heart rate in shape, but have close similarity with them in the frequency domain. We find that in model systems, the similarity of the LF component of HRV with sympathetic modulation of the heart rate is higher than the similarity of the HF component of HRV with parasympathetic modulation.In this work, we show how "chimera states," namely, the dynamical situation when synchronized and desynchronized domains coexist in an oscillator ensemble, can be controlled through a linear augmentation (LA) technique. Specifically, in the networks of coupled chaotic oscillators, we obtain chimera states throug
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत