Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/ALK.html Recognizing human intentions from the human counterpart is very important in human-robot interaction applications. Surface electromyography(sEMG) has been considered as a potential source for motion intention because the signal represents the on-set timing and amplitude of muscle activation. It is also reported that sEMG has the advantage of knowing body movements ahead of actual movement. However, sEMG based applications suffer from electrode location variation because sEMG shows different characteristics whenever the skin condition is different. They need to recreate the estimation model if electrodes are attached to different locations or conditions. In this paper, we developed a sEMG torque estimation model for electrode location variation. A decomposition model of sEMG signals was developed to discriminate the muscle source signals for electrode location variation, and we verified this model without making a new torque estimation model. Torque estimation accuracy using the proposed method was increased by 24.8% and torque prediction accuracy was increased by 47.7% for the electrode location variation in comparison with the method without decomposition. Therefore, the proposed sEMG decomposition method showed an enhancement in torque estimation for electrode location variation.Bio-impedance analysis provides non-invasive estimation of body composition. Recently, applications based on bio-impedance measurement in skin tissue such as skin cancer diagnosis and skin composition monitoring have been studied. For scanning the electrical properties along the skin depth, the relationship between the electrode topologies and the depth sensitivity should be clarified. This work reports a systematic analysis on designing line electrode topologies to measure the bio-impedance of the skin layer at specific depth using a finite element method (FEM). Four electrodes consisting of two outer current electrodes and two inner voltage electrodes
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत