Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/pi4kiiibeta-in-10.html This study outlines the first investigation of application of machine learning to distinguish "skilled" and "novice" psychomotor performance during a virtual reality (VR) brain tumor resection task. Tumor resection task participants included 23 neurosurgeons and senior neurosurgery residents as the "skilled" group and 92 junior neurosurgery residents and medical students as the "novice" group. The task involved removing a series of virtual brain tumors without causing injury to surrounding tissue. Originally, 150 features were extracted followed by statistical and forward feature selection. The selected features were provided to 4 classifiers, namely, K-Nearest Neighbors, Parzen Window, Support Vector Machine, and Fuzzy K-Nearest Neighbors. Sets of 5 to 30 selected features were provided to the classifiers. A working point of 15 premium features resulted in accuracy values as high as 90% using the Supprt Vector Machine. The obtained results highlight the potentials of machine learning, applied to VR simulation data, to help realign the traditional apprenticeship educational paradigm to a more objective model, based on proven performance standards. Graphical abstract Using several scenarios of virtual reality neurosurgical tumor resection together with machine learning classifiers to distinguish skill level.Despite all the efforts to optimize the meniscus prosthesis system (geometry, material, and fixation type), the success of the prosthesis in clinical practice will depend on surgical factors such as intra-operative positioning of the prosthesis. In this study, the aim was therefore to assess the implications of positional changes of the medial meniscus prosthesis for knee biomechanics. A detailed validated finite element (FE) model of human intact and meniscal implanted knees was developed based on a series of in vitro experiments. Different non-anatomical prosthesis positions were applied in the FE model
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत