Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/TGF-beta.html Quality assurance solutions to complement available motion compensation technologies are central for their safe routine implementation and success of treatment. This work presents a dense feature-based method for soft-tissue tumor motion estimation in megavoltage (MV) beam's-eye-view (BEV) projections for potential intra-treatment monitoring during dynamic tumor tracking (DTT). Dense sampling and matching principles were employed to track a gridded set of features landmarks (FLs) in MV-BEV projections and estimate tumor motion, capable to overcome reduced field aperture and partial occlusion challenges. The algorithm's performance was evaluated by retrospectively applying it to fluoroscopic sequences acquired at ∼2 frames s-1 (fps) for a dynamic phantom and two lung stereotactic body radiation therapy (SBRT) patients treated with DTT on the Vero SBRT system. First, a field-specific train image is initialized by sampling the tumor region at, S, pixel intervals on a grid using a representative frame from a stre mm and less then 1.8 mm for the phantom and the clinical dataset, respectively. Dense tracking showed promising results to overcome localization challenges at the field penumbra and partial obstruction by multi-leaf collimator (MLC). Motion retrieval was possible in ∼66% of the control points studied. In addition to MLC obstruction, changes in the external/internal breathing dynamics and baseline drifts were a major source of estimation bias. Dense feature-based tracking is a viable alternative. The algorithm is rotation-/scale-invariant and robust to photometric changes. Tracking multiple features may help overcome partial occlusion challenges by the MLC. This in turn opens up new possibilities for motion detection and intra-treatment monitoring during IMRT and potentially VMAT.This paper presents a tendon-driven robotic finger with its inspiration derived from the human extensor mechanism. The analytical model present
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत