Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/ly2090314.html 47 per 0.1 increase [95%CI 0.28 to 0.77]; p=0.003) and residual reference plaque burden (hazard ratio 4.01 per 10% increase [95%CI 1.50 to 10.77]; p=0.006) were identified as independent predictors of DOCE by Cox multivariable analysis. Nonuniform device expansion and substantial untreated residual plaque in reference segments were associated with long-term adverse events following BVS implantation. Baseline imaging to identify the appropriate device landing zone and procedural imaging to achieve uniform device expansion if possible (e.g. through post-dilatation) may improve clinical outcomes of BVS implantation. URL http//www.clinicaltrials.gov. Unique identifier NCT01751906 (ABSORB III); NCT01844284 (ABSORB Japan). URL http//www.clinicaltrials.gov. Unique identifier NCT01751906 (ABSORB III); NCT01844284 (ABSORB Japan).In this study, ram impacts at 5.5 m/s are simulated through finite element analysis in order to study the mechanical response of the brain. A calibrated internal state variable inelastic constitutive model was implemented into the finite element code to capture the brain behavior. Also, constitutive models for the horns were calibrated to experimental data from dry and wet horn keratin at low and high strain rates. By investigating responses in the different keratin material states that occur in nature, the bounds of the ram brain response are quantified. An acceleration as high as 607 g's was observed, which is an order of magnitude higher than predicted brain injury threshold values. In the most extreme case, the maximum tensile pressure and maximum shear strains in the ram brain were 245 kPa and 0.28, respectively. Because the rams do not appear to sustain injury, these impacts could give insight to the threshold limits of mechanical loading that can be applied to the brain. Following this motivation, the brain injury metric values found in this research could serve as true injury metrics for hum
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत