Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/bmn-673.html The optical properties of plasmonic nanocomposites can be manipulated by the adjustment of the intrinsic property of the nanocrystal and/or coupling effect between adjacent nanocrystals from the same layer (intralayer) and/or the neighboring layer (interlayer). Taking advantage of this novel LbL fabrication technique, the properties of multilayer plasmonic nanocrystal arrays stacked in a homogeneous matrix can be manipulated via tuning the interlayer or intralayer coupling between nanocrystals, which can be achieved by sophisticated control of the packing density of two-dimensional nanocrystal arrays in each individual layer or the thickness of the polymer thin film between two adjacent nanocrystal arrays, respectively. These results provide a facile and effective way of designing a more complex multilayer nanostructure with controllable properties in a homogeneous polymer matrix.An emulsion-templated porous material can be formed by polymerizing the continuous phase of high internal phase Pickering emulsions (HIPEs). Although polymerization is a key step to maintain the pore size and integrity of the final sponge, it lowers the effective specific surface area of the final sponge as the continuous phase makes up at least half of the HIPE's volume. Hence, eliminating the need of polymerization not only eases the material processing but also leads to a greater specific surface area. Here, we report a novel strategy in which none of the emulsion phases require polymerization and is therefore a versatile methodology. For this purpose, several oil-in-water Pickering emulsions were prepared using graphene oxide (GO) and cellulose nanocrystals (CNCs) as the stabilizing agents. GO nanosheets are then reduced by mixing the emulsions with an adequate amount of vitamin C as a green reducing agent. Removal of the oil phase via multiple washing and boiling steps results in the formation of the ultimate reduced graphene oxide (rGO
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत