Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/MEK.html We propose an LAC application strategy focused on LACs and optimized to work with other agronomic measures according to the classification of HM risk level for LACs, providing a cost-effective and practical solution for safe utilization of large areas of farmland polluted with low to moderate levels of HMs.Uranium pollution in environment and food chain is a serious threat to public security and human health. Herein, we proposed a temperature-robust, ratiometric, and label-free bioassay based on G-quadruplex proximate DNAzyme (G4DNAzyme), accommodating us to precisely monitor uranium pollution and biosorption. The proximity of split G-quadruplex probes was proposed to sense UO22+-activated DNAzyme activity, thus eliminating the use of chemically labeled nucleic acid probes. And the simultaneous monitoring of G-quadruplex and double-stranded structures of DNAzyme probes contributed to a ratiometric and robust detection of UO22+. Particularly, the separation of enzymatic digestion and fluorescence monitoring endued a robust and highly responsive detection of UO22+ upon the temperature of enzymatic digestion process ranged from 18° to 41 °C. Consequently, G4DNAzyme assay allowed a robust, label-free and ratiometric quantification of uranium. We demonstrated the feasibility of G4DNAzyme assay for estimating uranium pollution in water and aquatic product samples. Ultimately, G4DNAzyme assay was adopted to serve as the platform to screen bacterial species and conditions for uranium biosorption, promising its roles in uranium associated biosafety control.Red mud (RM) as bauxite residue from aluminum plant was investigated as cost-effective catalyst for pyrolysis and ex-situ catalytic conversion of plastic wastes into H2-rich syngas and magnetic carbon nanocomposites. The results showed that the introduction of RM catalyst elevated gas yield from 23.8 to 60.3 wt% as a rise of catalytic temperature (700-850 °C), due to its high iron activ
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत