Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/p22077.html A total of 29 surface farmland soil samples were collected to investigate the spatial distribution and composition characteristics of 13 organophosphorus flame retardants (OPFRs), 11 polybrominated diphenyl ethers (PBDEs), and 8 novel brominated flame retardants (NBFRs) in Chengdu, China. The OPFRs were widely detected in the farmland soil with concentrations ranging from 2.92 to 160 ng g-1 dry weight (dw). BDE-209 was found with a concentration range of n.d. to 50.4 ng g-1 dw, and was the main PBDE congener accounting for 90% of ΣPBDEs in the surface farmland soil. In the case of NBFRs, only TBB and BTBPE were detected in the farmland soil from rural areas of Chengdu. There was no obvious spatial distribution of the OPFRs among different administrative regions in Chengdu (p > 0.05), but the maximum concentration of OPFRs was found in a furniture production area. Leaching experiments showed that the concentration of most of the investigated OPFRs in two kinds of soils with different mechanical compositions and TOC contents decreased with the increase of soil depth. Addition of DOM could decrease the OPFR levels in the leachate by less than 25%, with the exception of TCPP, which decreased by up to 45%. More importantly, TCEP and TCPP exhibited stronger mobility than the other OPFRs in soil, and the migration capacity of TCPP was more sensitive to the DOM level, indicating that TCEP might more easily migrate from soil to groundwater in the nature.Homogeneous digital immunoassay is a powerful analytical method for highly sensitive protein biomarker detection with a simple protocol. However, it has not been multiplexed yet. In this study, we developed a multiplexed homogeneous digital immunoassay based on single-particle motion analysis (digital homogeneous non-enzyme-linked immunosorbent assay, digital Ho-Non ELISA). In this assay, multiple target antigen molecules react with the optical subpopulation of magnetic nanobea
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत