Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/sch-442416.html The excess energy of subsurface hydrogen species may facilitate overcoming reaction barriers and remarkably alters the reaction pathways. We present an in-depth study on the different reactivity of surface and subsurface hydrogen species in syngas methanation on the O/C-covered Pd(100) by using density functional theory calculations and microkinetic simulations. It is shown that the apparent energy barriers to form H2O and CH4 are reduced by 0.87 and 0.61 eV for the case in which the hot subsurface hydrogen species are involved in the whole hydrogenation process. The activity of O-covered Pd(100) is better than that of the C-covered surface, and the reactivity of subsurface hydrogen species is much higher than that of surface hydrogen species under ambient conditions. Increasing CO partial pressure strongly enhances the reactivity of subsurface hydrogen species in syngas methanation on the O-covered Pd(100). These important results are helpful for understanding the hot-atom mechanism through subsurface heterogeneous catalysis.External driving of the Fermion reservoirs interacting with a nanoscale charge-conductor is shown to enhance its mechanical stability during resonant tunneling. This counterintuitive cooling effect is predicted despite the net energy flow into the device. Field-induced plasmon oscillations stir the energy distribution of charge carriers near the reservoir's chemical potentials into a nonequilibrium state with favored transport of low-energy electrons. Consequently, excess heating of mechanical degrees of freedom in the conductor is suppressed. We demonstrate and analyze this effect for a generic model of mechanical instability in nanoelectronic devices, covering a broad range of parameters. Plasmon-induced stabilization is suggested as a feasible strategy to confront a major problem of current-induced heating and breakdown of nanoscale systems operating far from equilibrium.Acetic acid adsorp
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत