Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/inx-315.html To study the effect and potential mechanism of LKB1 on non-small cell lung cancer (NSCLC) A549 cells. A549 cells were divided into control group, LKB1 negative control (NC) group, LKB1 group, ERK inhibitor group and LKB1 + ERK activator group. Cell proliferation and apoptosis were detected by cell counting kit (CCK-8) assay and flow cytometry, respectively. Transwell assay was used to analyze the invasion ability of A549 cells. The expression of apoptosis and ERK signaling pathway-related proteins were studied by Western blot. Furthermore, a nude mouse xenograft model was constructed and treated with LKB1, ERK inhibitor and activator, respectively. The tumor volume and tumor weight were measured. Immunohistochemistry was used to test the expression of Ki-67 protein in tumor tissues, and TUNEL staining was used to test the apoptosis. Moreover, Western blot was used to detect ERK signaling pathway-related proteins in tumor tissues. Compared with control and NC groups, cell proliferation and invasion were inhibited in ERK inhibitor and LKB1 groups, while apoptosis and apoptosis-related proteins were increased (p < 0.05). Further study showed that ERK activator can reverse the effect of LKB1 in A549 cells. In nude mice, ERK inhibitor and LKB1 can reduce cell tumorigenicity and inhibit proliferation. Apoptosis was increased by ERK inhibitor and LKB1 treatment. Western blot showed that LKB1 and ERK inhibitor could reduce the protein expression of p-ERK1/2. However, the indicators above were the opposite in the ERK activator group. LKB1 overexpression can inhibit proliferation and promote apoptosis of NSCLC A549 cells, and its mechanism may be related to inhibition of the ERK signaling pathway. LKB1 overexpression can inhibit proliferation and promote apoptosis of NSCLC A549 cells, and its mechanism may be related to inhibition of the ERK signaling pathway. DNA methylation is known to play an important role in myelodysplast
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत