Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/mrtx849.html We investigate theoretically the freezing behavior of a two-dimensional system of hard disks on a one-dimensional external potential (typically called laser-induced freezing). As shown by earlier theoretical and numerical studies, one observes freezing of the modulated liquid upon increase of the substrate potential amplitude, and reentrant melting back into the modulated liquid when the substrate potential amplitude is increased even further. The purpose of our present work is to calculate the freezing and reentrant melting phase diagram based on information from the bulk system. To this end, we employ an integrated pressure-balance equation derived from density functional theory [Phys. Rev. E 101, 012609 (2020)2470-004510.1103/PhysRevE.101.012609]. Furthermore, we define a measure to quantify the influence of registration effects that qualitatively explain reentrant melting. Despite severe approximations, the calculated phase diagram shows good agreement with the known phase diagram obtained by Monte Carlo simulations.We show that some boundary conditions assumed at a thin membrane may result in normal diffusion not being the stochastic Markov process. We consider boundary conditions defined in terms of the Laplace transform in which there is a linear combination of probabilities and probability fluxes defined on both membrane surfaces. The coefficients of the combination may depend on the Laplace transform parameter. Such boundary conditions are most commonly used when considering diffusion in a membrane system unless collective or nonlocal processes in particles diffusion occur. We find Bachelier-Smoluchowski-Chapmann-Kolmogorov (BSCK) equation in terms of the Laplace transform and we derive the criterion to check whether the boundary conditions lead to fundamental solutions of diffusion equation satisfying this equation. If the BSCK equation is not met, then the Markov property is broken. When a probability flux
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत