Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/bx-795.html The present study aimed to assess and monitor the therapeutic potential of antimicrobial metabolites from marine sponge-associated bacteria collected from the southeast coast of India against multidrug-resistant clinical bacterial isolates. Five sponge samples were collected and the metabolite-producing bacteria were screened from the Gulf of Mannar, India, and their antibacterial potential was studied against drug-resistant clinical bacterial isolates obtained from the hospitals. The two metabolite-producing bacteria (IS1 and IS2) were characterized by standard microbiology protocols and 16S rRNA sequencing. The antibacterial metabolites were characterized by liquid chromatography mass spectrometry (LCMS) analysis. The study suggested that marine sponges such as Spheciospongia spp., Haliclona spp., Mycale spp., Tedania spp., and SS-01 were associated with 30 ± 2, 26 ± 2, 23 ± 3, 21 ± 2, and 20 ± 2% of antibacterial metabolite-producing bacteria, respectively. The LCMS analysis of metabolites extracted from IS1 (4,6-dimethyl-2-pyrimidinamine; 4,5-dimethyl-2-propylsilyl-1H-imidazole) and IS2 (caproyl amide, 2-imidazoline) associated with Spheciospongia spp. exhibited significant antibacterial properties against drug-resistant bacteria. IS1 showed antimicrobial potential against the clinical isolates of Proteus spp., and IS2 showed antibacterial potential against isolates of both Proteus mirabilis and Salmonella typhi. IS1 and IS2 were identified by 16S rRNA sequencing and designated as Klebsiella spp. DSCE-bt01 and Pseudomonas spp. DSCE-bt02, respectively. The current study concluded that the assessment and monitoring of novel isolates from sponge-associated bacteria from marine coastal areas probably offer latest breakthrough in curtailing the global antimicrobial resistance and the study of such ecosystems adds value addition to the searching of novel bioactive compounds from terrestrial ecosystems.The novel coronavi
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत