Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/bgb-8035.html The facile permeation of the tetrahedra structures into cells is used for the imaging of MCF-7 and HepG2 cancer cells and their discrimination from normal epithelial MCF-10A breast cells.Domain morphology plays a pivotal role not only for the synthesis of high-quality 2D transition metal dichalcogenides (TMDs) but also for the further unveiling of related physical and chemical properties, yet little has been divulged to date, especially for metallic TMDs. In addition, solid precursor as a transition metal source has been conventionally introduced for the synthesis of TMDs, which leads to an inhomogeneous distribution of local domains with the substrate position, making it difficult to obtain a reliable film. Here, we tailor the domain morphologies of metallic NbSe2 and NbSe2/WSe2 heterostructures using liquid-precursor chemical vapor deposition (CVD). We find that triangular, hexagonal, tripod-like, and herringbone-like NbSe2 flakes are constructed through control of growth temperature and promoter and precursor concentration. Liquid-precursor CVD ensures domain morphologies that are highly reproducible over repeated growth and uniform along the gas-flow direction. A domain coverage of ∼80% is achieved at a high precursor concentration, starting with tripod-like NbSe2 domain and evolving to the herringbone fractal. Furthermore, mixing liquid W and Nb precursors results in sea-urchin-like heterostructure domains with long-branch-shaped NbSe2 at low temperature, whereas protruded hexagonal heterostructure domains grow at high temperature. Our liquid precursor approach provides a shortcut for tailoring the domain morphologies of metallic TMDs as well as metal/semiconductor heterostructures.The ability to control the emission from single-molecule quantum emitters is an important step toward their implementation in optoelectronic technology. Phthalocyanine and derived metal complexes on thin insulating layers studied by
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत