Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/ami-1.html The characterization of polymer-polymer interfaces is of great interest to understand the diffusion process and chemical interactions in polymeric multiphase systems. This study investigated the formation of the interface layer between polyamide (PA) and polypropylene (PP) and its dependency on the maleic anhydride (MAH) content in PP. New insights with a very high level of details on the formation of the interfacial layer are obtained by employing a special technique of atomic force microscopy (AFM) combined with infrared (IR) for chemical imaging at nanoscale spatial resolution. This enables the determination of the interface thickness and even the observation and visualization of the diffusion gradient across the PA/PP interface layer. Combined with classical investigation methods such as interfacial energy and rheology, the method of nano-IR spectroscopy represents a very powerful tool to obtain more insights and a deeper understanding of the interfacial phenomenon in multiphase polymeric systems.On the highly oriented pyrolytic graphite (HOPG) surface, a new porphyrin molecule MT-4 containing a porphine core with six alkyl chains and two carboxyl groups has been explored using scanning tunneling microscopy (STM) technology. Solvent and pyridine regulation have been proved to be two effective ways to control and tune the supramolecular structure of MT-4 at interfaces. Different high-resolution STM (HR-STM) images with highly ordered and closely packed arrangements were gained at the corresponding liquid-solid interface, including phenyl octane (PO), 1-heptanoic acid (HA), and 1-hexanol. Except for the solvent effect, introducing pyridine derivatives such as 4,4'-vinylenedipyridine (DPE) and 4,4'-((1E,1'E)-(2,5-bis(octyloxy)-1,4-phenylene) bis(ethene-2,1-diyl)) dipyridine (PEBP-C8) is also effective to modulate the self-assembly of MT-4. With careful analysis of the STM pictures and the density functional theory (DF
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत