Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/danicamtiv-myk-491.html Antipredatory behavioral responses tend to be energetically expensive, and prey species thus need to resolve trade-offs between these behaviors and other activities such as foraging and mating. While these trade-offs have been well-studied across taxa, less is known about how costs and benefits vary in different life-history contexts, and associated consequences. To address this question, we compared responses of the yellow fever mosquito (Aedes aegypti [Diptera Culicidae]) to predation threat from guppy (Poecilia reticulata [Cyprinodontiformes Poeciliidae]) across two life-history stages-larvae (data from previous study) and pupae (from this study). Pupae are motile but do not feed and are comparable to larvae in terms of behavior. To understand how physiological costs affect the threat sensitivity of pupae, we used sex (with size as a covariate) as a proxy for stored energy reserves, and quantified movement and space use patterns of male (small-sized) and female (large-sized) pupae when exposed to predation threat. We found that pupae did not alter movement when exposed to predator cues but instead altered spatial use by spending more time at the bottom of the water column. We found no effect of pupa sex (or size) on the behavioral responses we measured. We conclude that pupa behavior, both antipredatory and otherwise, is primarily targeted at minimizing energy expenditure, as compared with larval behavior, which appears to balance energy expenditure between the opposing pressures of foraging and of avoiding predation. We suggest that antipredatory defenses in metamorphosing prey are modulated by varying energetic trade-offs associated with different life-history stages.The COVID-19 pandemic has slowed research progress, with particularly disruptive effects on investigations of addressing urgent public health challenges, such as chronic pain. The National Institutes of Health (NIH) Department of Defense
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत