Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/phenol-red-sodium-salt.html Fiber optic localized surface plasmon resonance (FO LSPR) sensors capable of portable, real-time, and remote sensing are emerging with the progress of lab-on-fiber technology. However, the small area of the substrate by the optical fiber often restricts the sensitivity of the FO LSPR sensors. To improve the performance of the FO LSPR sensors, it is necessary to enhance the interactions between incident light and plasmonic nanostructures within a defined region. Dimer in which two nanoparticles are arranged with nanometer spacing can effectively increase the light-nanostructure interactions. It is well known that the nanogap made in the assembled nanoparticles significantly enhances the intensity of the electromagnetic field in the confined area by the hot spot effect. We fabricate the dimers of gold nanoparticles on the optical fiber with benzenethiol using a method that reduces the repulsive force between the nanoparticles. In the dimers, the strong plasmonic interaction between the two nanoparticles produces a longitudinal plasmon coupling band, which is compared to the transverse plasmon band by the monomer-based FO LSPR sensor with a similar density of gold nanoparticles. In the proposed sensor, the longitudinal band displays approximately 9.1 times improved sensitivity. When two types of sensors are applied to the biosensor application, the dimer-based FO LSPR sensor also proves an improved limit of detection of about 2.6 times. This method is expected to become a milestone in the field of measurement for small molecules and low concentration through the advancement of the yield and density of dimers.This study records the selection of the best combination of geometric optimization and frequency calculation methods of the trans,trans,trans-[Pt(N3)2(OH)2(py)2](FM-190) by using different density functional calculation methods and basis sets. The results show that the CAM-B3LYP/SDD method has the bes
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत