Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/gw-441756.html Transition metal orthovanadates are emerging 2D materials for promising electrochemical energy storage applications. Facile hydrothermal method for nanocrystalline indium vanadate (InVO4) semiconducting materials' fabrication is economical because of its direct chemical synthesis. X-ray diffraction studies, field emission scanning electron microscope (SEM) images, transmission electron microscopy (TEM), and photoelectron X-ray spectrum are used to describe the semiconductor materials as synthesized. InVO4 microspheres have attracted a lot of attention in the energy and environmental sector. These microsphere-derived semiconductor materials are recognized to offer the advantages of their large surface area, tunable pore sizes, enhanced light absorption, efficient carrier (electron-hole) separation, superior electronic and optical behavior, and high durability. From the results of SEM and TEM, InVO4 shows a microsphere construction with a mixture of nanosized particles. Diffuse reflectance UV-visible measurements are used to determine the bandgap, and it is found to be 2.1 eV for InVO4. The electrochemical analysis reveals a superior performance of the pseudocapacitor with hydrothermally derived microspheres of InVO4. Alongside an improved pseudocapacity, developed after 4000 cycles, it has excellent cycling stability with a retention of ≈94% of its original specific capacitance efficiency.Thrombospondin type I domain-containing 7A (THSD7A), is a specific autoantigen of adult idiopathic membranous nephropathy (IMN), whose circulating antibody (THSD7A-AB) represents a promising biomarker for diagnosis of IMN. The objective of this meta-analysis is to investigate the diagnostic efficiency of THSD7A-AB for IMN. After rigorous data extraction, quality assessment, and data analysis, 10 articles (4545 patients) are included. For IMN, the summary sensitivity is 4% (2-7%), and the specificity is 99% (98-100%). The summary po
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत