Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/1-azakenpaullone.html Resistance to therapies targeting the epidermal growth factor receptor (EGFR), such as cetuximab, remains a major roadblock in the search for effective therapeutic strategies in head and neck squamous cell carcinoma (HNSCC). Due to its close interaction with the EGFR pathway, redundant or compensatory activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway has been proposed as a major driver of resistance to EGFR inhibitors. Understanding the role of each of the main proteins involved in this pathway is utterly important to develop rational combination strategies able to circumvent resistance. Therefore, the current work reviewed the role of PI3K/Akt pathway proteins, including Ras, PI3K, tumor suppressor phosphatase and tensing homolog, Akt and mammalian target of rapamycin in resistance to anti-EGFR treatment in HNSCC. In addition, we summarize PI3K/Akt pathway inhibitors that are currently under (pre)clinical investigation with focus on overcoming resistance to EGFR inhibitors. In conclusion, genomic alterations in and/or overexpression of one or more of these proteins are common in both human papillomavirus (HPV)-positive and HPV-negative HNSCC tumors. Therefore, downstream effectors of the PI3K/Akt pathway serve as promising drug targets in the search for novel therapeutic strategies that are able to overcome resistance to anti-EGFR treatment. Co-targeting EGFR and the PI3K/Akt pathway can lead to synergistic drug interactions, possibly restoring sensitivity to EGFR inhibitors and hereby improving clinical efficacy. Better understanding of the predictive value of PI3K/Akt pathway alterations is needed to allow the identification of patient populations that might benefit most from these combination strategies. To optimize the dosing regimen in patients with severe renal impairment based on population pharmacokinetic (PPK)/pharmacodynamic analysis. The pharmacokinetics and safety of nemonoxacin
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत