Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/salinosporamide-a-npi-0052-marizomib.html INTRODUCTION N6-methyladenosine (m6A), the most prominent mRNA modification, plays a critical role in many physiological and pathological processes. However, the roles of m6A RNA modification in hepatocellular carcinoma (HCC) remain largely unknown. MATERIALS AND METHODS We investigated the mRNA expression and clinical significance of m6A-related genes using data from The Cancer Genome Atlas (TCGA) liver hepatocellular carcinoma cohort. Mutation, copy number variation (CNV), methylation, differential expression, and gene ontology analyses, gene set enrichment analysis and the construction of a competing endogenous RNA (ceRNA) regulatory network were performed to investigate the underlying mechanisms of the aberrant expression of m6A-related genes. RESULTS m6A-related genes were frequently dysregulated in cancers but with a cancer-specific pattern. METTL3, YTHDF2, and ZC3H13 were found to be independent prognostic factors of overall survival (OS); however, only METTL3 was found to be an independent prognostic factor of recurrence-free survival (RFS). Joint effects analysis showed the predictive capacity of combining METTL3, YTHDF2, and ZC3H13 for HCC OS. Then the potential mechanisms of METTL3 were further explored due to its prognostic role in both OS and RFS. CNV and DNA methylation, but not somatic mutations, might contribute to the abnormal upregulation of METTL3 in HCC. Significantly altered genes, microRNAs, and lncRNAs were identified, and a ceRNA regulatory network was constructed to explain the upregulation of METTL3 in HCC. CONCLUSIONS Our study identified several m6A-related genes, especially METTL3, that could be potential prognostic biomarkers in HCC.Cytochrome p450-mediated metabolism of GRS (indolinone antiaggregant) and its effects on activities of cytochrome p450 isoenzymes were studied. Inhibition of 6 isomers of cytochrome p450 in human liver microsomes was studied with
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत