Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/pexidartinib-plx3397.html Smaller pore size, greater porosity, higher water uptake, and swelling ratio were achieved by incorporating CSNPs and DEX-loaded CSNPs. The cytotoxicity study was performed for the L929 fibroblast cell line. The drug release kinetics study was performed on a prepared drug delivery system. Finally, the release test results showed a suitable extended-release of DEX from the carrier over 16 days. Overall, the developed drug-releasing system can be a promising candidate for drug delivery applications.Combination chemotherapy regimens have been put forward to achieve a synergistic effect and reduce drug doses for the clinical applications of cancer treatment. One of the principal approaches for killing cancer cells involves triggering apoptotic cell death with anti-cancer drugs. Nevertheless, the efficacy of apoptosis induction in tumors is often restricted on account of intrinsic or acquired resistance of cancer cells to apoptosis. Ferroptosis, which involves reactive oxygen species (ROS), is another way to regulate cell death. Doxorubicin (DOX), a commonly used chemotherapeutic agent, can enter the nucleus and destroy tumor cells while also affecting mitochondria by producing semiquinone radicals. Therefore, a drug system combining ferroptosis and apoptosis, bridged by DOX-induced ROS, was proposed to be designed. Herein, we employed a facile and effective self-assembly method to prepare DOX-loaded nanocomplexes by DOX, Pluronic F-68, tannic acid (TA), and iron ions. TA and iron ions could not only improve the stability of nanocarrier but also facilitate achieving a ferroptotic effect. As a result, DOX@F-68/TA/Fe3+ nanocomplexes showed a strong pro-apoptotic effect as well as an increase in intracellular oxidative stress. The improved oxidative stress further resulted in the ferroptosis of tumor cells. In vivo experiments demonstrated that DOX@F-68/TA/Fe3+ efficiently targeted the tumor following intravenou
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत