Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/BMS-536924.html A label-free electrochemical method was developed for sensitive determination of ten-eleven translocation protein 1 (TET1) which can mediate the demethylation of DNA. This strategy is mainly based on MspI-mediated restriction endonuclease reaction. Current response difference of the biosensor before and after cleavage by MspI was dependent on the activity and concentration of TET1. With the aid of Au nanoparticles, this method shows a good linear range from 0.0042 μg μL-1 to 0.0210 μg μL -1 with a correlation coefficient of 0.9350 and a low limit of detection 0.00098 μg μL -1. Finally, this method was used to investigate the effects of n-oxalylglycine (NOG) and taxol on activity of TET1. The results indicated that NOG could inhibit TET1 activity but taxol could not. So this electrochemical biosensor could be applied to TET activity evaluation and inhibitor screening in field of biomedicine and clinical diagnosis.Colorectal cancer (CRC) develops from polyps in the inner large intestine or rectum and an increasing incidence and high mortality rate has been observed in humans. Currently, colonoscopy is the preferred modality for early CRC diagnosis. However, this technique has several limitations, such as high medical costs and intricate procedures, leading to increasing demands for the development of a new, simple, and affordable diagnostic method. In this study, an advanced electrochemical biosensor based on rationally designed affinity peptides was developed for discriminating adenoma to carcinoma progression. Amino acid-substituted and rationally designed synthetic peptides (BP3-1 to BP3-8) based on in silico modeling studies were chemically synthesized, and covalently immobilized onto a gold electrode using aromatic ring compounds through surface chemistry techniques. The binding performance of the developed sensor system was observed using square wave voltammetry (SWV). The peptide BP3-2 was selected depending
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत