Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/ To develop a novel predictive model using primarily clinical history factors and compare performance to the widely used Rochester Low Risk (RLR) model. In this cross-sectional study, we identified infants brought to one pediatric emergency department from January 2014 to December 2016. We included infants age 0-90days, with temperature ≥38°C, and documented gestational age and illness duration. The primary outcome was bacterial infection. We used 10 predictors to develop regression and ensemble machine learning models, which we trained and tested using 10-fold cross-validation. We compared areas under the curve (AUCs), sensitivities, and specificities of the RLR, regression, and ensemble models. Of 877 infants, 67 had a bacterial infection (7.6%). The AUCs of the RLR, regression, and ensemble models were 0.776 (95% CI 0.746, 0.807), 0.945 (0.913, 0.977), and 0.956 (0.935, 0.975), respectively. Using a bacterialinfection risk threshold of .01, the sensitivity and specificity of the regression model was 94.6% (87.4%, 100%) and 74.5% (62.4%, 85.4%), compared with 95.5% (87.5%, 99.1%) and 59.6% (56.2%, 63.0%) using the RLR model. Compared with the RLR model, sensitivities of the novel predictive models were similar whereas AUCs and specificities were significantly greater. If externally validated, these models, by producing an individualized bacterial infection risk estimate, may offer a targeted approach to young febrile infants that is noninvasive and inexpensive. Compared with the RLR model, sensitivities of the novel predictive models were similar whereas AUCs and specificities were significantly greater. If externally validated, these models, by producing an individualized bacterial infection risk estimate, may offer a targeted approach to young febrile infants that is noninvasive and inexpensive. Current estimates of the incidence of tachyarrhythmias in infants rely on clinical documentation and may not reflect the true rate in the gen
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत