Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/dup-697.html We apply density functional theory to estimate the energetics and charge carrier concentrations and, in turn, the resistance across the (210)[001] and (111)[11[combining macron]0] grain boundaries (GBs) in proton conducting Y-doped BaZrO3, assessing four commonly used approximations in space charge modelling. The abrupt core approximation, which models the GB core as a single atomic plane rather than a set of multiple atomic planes, gives an underestimation of the GB resistance with around one order of magnitude for both GBs. The full depletion approximation, which assumes full depletion of effectively positive charge carriers in the space charge layers, has negligible effect on the GB resistance compared to a more accurate model with decaying depletion. Letting protons redistribute in the continuity between atomic planes gives a GB resistance up to 5 times higher than the case where protons are restricted to be located at atomic planes. Finally, neglecting trapping effects between the acceptor doping and the defect charge carriers gives a higher GB resistance with a factor of roughly 2.Recently, the existence of room-temperature ferroelectricity has been experimentally confirmed in a number of two-dimensional (2D) materials. With a switching barrier large enough to be stable against thermal fluctuation, ferroelectricity in even lower dimensions like 1D or 0D may be explored for data storage of higher density, which has been scarcely reported. Here, we show the first-principles design of 0D ferroelectrics/multiferroics based on polar functionalized fullerene. It turns out that the ferroelectric polarization of endohedral metallofullerenes can be reversed with the diffusion of metal ions inside when the fullerene is fixed on a substrate. If its bonding with the substrate is relatively weak, the rotation of fullerene will be more favorable in energy for ferroelectric switching. The switching barriers of both modes, for
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत