Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/EGFR(HER).html Reliable estimation of exposure to black carbon (BC) and sub-micrometer particles (PM1) within a city is challenging because of limited monitoring data as well as the lack of models suitable for assessing the intra-urban environment. In this study, to estimate exposure levels in the inner-city area, we developed land use regression (LUR) models for BC and PM1 based on specially designed mobile monitoring surveys conducted in 2019 and 2020 for three seasons. The daytime and nighttime LUR models were developed separately to capture additional details on the variation in pollutants. The results of mobile monitoring indicated similar temporal variation characteristics of BC and PM1. The mean concentrations of pollutants were higher in winter (BC 4.72 μg/m3; PM1 56.97 μg/m3) than in fall (BC 3.74 μg/m3; PM1 33.29 μg/m3) and summer (BC 2.77 μg/m3; PM1 27.04 μg/m3). For both BC and PM1, higher nighttime concentrations were found in winter and fall, whereas higher daytime concentrations were observed in the summer. A supervised forward stepwise regression method was used to select the predictors for the LUR models. The adjusted R2 of the LUR models for BC and PM1 ranged from 0.39 to 0.66 and 0.45 to 0.80, respectively. Traffic-related predictors were incorporated into all the models for BC. In contrast, more meteorology-related predictors were incorporated into the PM1 models. The concentration surface based on the LUR models was mapped at a spatial resolution of 100 m, and significant seasonal and diurnal trends were observed. PM1 was dominated by seasonal variations, whereas BC showed more spatial variation. In conclusion, the development of season-dependent diurnal LUR models based on mobile monitoring could provide a methodology for the estimation of exposure and screening of influencing factors of BC and PM1 in typical inner-city environments, and support pollution management.Isolating air pollution sources in a complex transp
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत