Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/alexidine-dihydrochloride.html Theoretically and with the help of numerical simulation the coagulation rate of nanoparticle suspensions is analyzed. Analytical expressions are proposed that describes the rate of stationary coagulation of the nanoparticles suspended in a solvent ( d n a / d t , where n a is the particle concentration) and the characteristic coagulation time θ = - n a / ( d n a / d t ) . In the contrast to traditionally used equations, the proposed expressions allow one to describe with high accuracy the rate of stationary coagulation of not only low concentrated suspensions, where the volume content of nanoparticles is ρ ≪ 1 %, but also rather highly concentrated ones, at ρ ∼ 1 % and more ( ρ = n a v a where v a is a particle volume), which are relevant for most of the industrial applications. Analytical expressions are written for both three-dimensional geometry, which is relevant for real colloids, and two-dimensional geometry, which is useful to compare results of the analytical solution and numerical simulation. Computer experiments are performed in the framework of the two-dimensional method of stochastic dynamics. Satisfactory agreement of the obtained analytical expressions with the results of numerical calculations is demonstrated. The dependences of the coagulation time on the height of the interparticle energy barrier and on the suspension concentration are analyzed. It is shown that, in contrast to the obtained theoretical expressions, the traditionally used formulas overestimate the characteristic coagulation time for highly concentrated suspensions by more than an order of magnitude. © 2020 The Authors.A new concept has been developed to compare different ways of presenting instructions for action for evaluation procedures. The representation forms algorithm (A), image (I) and text (T) are examined with regard to the number of top events, error frequencies, execution times and subjectively perceived w
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत