Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/ly3009120.html The linear array's one-dimensional spatial geometry is simple but suffices for univariate direction finding, i.e., is adequate for the estimation of an incident source's direction-of-arrival relative to the linear array axis. However, this nominal one-dimensional ideality could be often physically compromised in the real world, as the constituent sensors may dislocate three-dimensionally from their nominal positions. For example, a towed array is subject to ocean-surface waves and to oceanic currents [Tichavsky and Wong (2004). IEEE Trans. Sign. Process. 52(1), 36-47]. This paper analyzes how a nominally linear array's one-dimensional direction-finding accuracy would be degraded by the three-dimensional random dislocation of the constituent sensors. This analysis derives the hybrid Cramér-Rao bound (HCRB) of the arrival-angle estimate in a closed form expressed in terms of the sensors' dislocation statistics. Surprisingly, the sensors' dislocation could improve and not necessarily degrade the HCRB, depending on the dislocation variances but also on the incident source's arrival angle and the signal-to-noise power ratio.This paper investigates the performance of active noise control (ANC) systems with two reflecting surfaces that are placed vertically on ground in parallel. It employs the modal expansion method and the boundary element method to calculate the noise reduction of the systems with infinitely large and finite size reflecting surfaces, respectively. Both experimental and simulation results show that the noise reduction of the system can be significantly increased after optimizing the surface separation distance and their locations with the sound sources. It is found that the sound radiation of the primary source can be completely reduced in principle if the surface interval is less than half the wavelength and the source line is perpendicular to the surfaces for infinitely large reflecting surfaces. Even
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत