Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/TSU-68(SU6668).html This work provides insight into the interaction of PEDOTPSS/cellulose that will aid in the design of sustainable electronic devices.While green bioplastic based on carbohydrate polymers have showed considerable promise, the methods typically used to prepare them in a single material have remained a significant challenge. In this study, a simple approach is proposed to fabricate high performance cellulose films composed of chemically and physically dual-crosslinked 2,2,6,6-tetramethylpiperidine-1-oxy-oxidized cellulose nanofibers (DC TEMPO-CNFs). The hydroxyl groups of TEMPO-CNF suspensions were firstly crosslinked chemically with epichlorohydrin (ECH), and subsequently TEMPO-CNF matrices were crosslinked physically via the strong electrostatic interaction between carboxylate and Ca2+ ions. It was found that the optimized DC TEMPO-CNF films exhibit a good transmittance (90 %) and a high tensile strength (303 MPa). Furthermore, these DC TEMPO-CNF films revealed superior thermal stability and excellent water resistance compared to neat TEMPO-CNF films without crosslinked domains. We believe that these results will pave the way to preparing practical polysaccharide bioplastics with simple, environmentally-friendly manufacturing processes.A biaxially stretched cellulose film with high performance was manufactured from ionic liquid solution through an environmentally friendly, cost effective and facile process. As the transverse stretching ratio (TSR) is increased, the tensile strength and elastic modulus of the biaxially stretched cellulose film in transverse direction (TD) are significantly improved and the coefficient of thermal expansion in TD is reduced while the performance achieves balance in the machine direction (MD) and TD. The transverse stretching regulates the microfibril orientation in the gel film from dominantly uniaxial orientation in MD to homogeneous planar orientation. This microfibril orientatio
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत