Smart wearable electronics have drawn increasing attention for their potential applications in personal thermal management, human health monitoring, portable energy conversion/storage, electronic skin and so on. However, it is still a critical challenge to fabricate the multifunctional textiles with tunable morphology and performance while performing well in flexibility, air permeability, wearing comfortability. Herein, we develop a novel roll-to-roll layer-by-layer assembly strategy to construct bark-shaped carbon nanotube (CNT)/Ti3C2Tx MXene composite film on the fiber surface. The fabricated bark-shaped CNT/MXene decorated fabrics (CMFs) exhibit good flexibility, air permeability and electrical conductivity (sheet resistance, 6.6 Ω/□). In addition, the CMFs demonstrate good electrothermal performance (70.9 °C, 5 V), electromagnetic interference (EMI) shielding performance (EMI shielding effectiveness, 30.0 dB under X-Brand), and high sensitivity as the flexible piezoresistive sensors for monitoring the human motions. Importantly, our CMFs show distinctive EMI shielding mechanism, where a great proportion of incident electromagnetic microwaves are reflected by the bark-shaped CNT/MXene films owing to the multi-interface scattering effects. This work may provide a new strategy for the fabrication of multifunctional textile-based electronics and pave the way for smart wearable electronics.Photocatalysis is a promising approach for generating hydrogen, an eco-friendly and cost-effective fuel. It is hypothesized that the ternary catalyst ZnIn2S4-rGO-CuInS2, prepared by ultrasonication method, should be effective for optimized photocatalytic hydrogen generation in a Na2S/Na2SO3-water mixture. The as-synthesized catalyst was characterized using various surface analytical and optical techniques. Field-emission scanning electron microscopy and high-resolution transmission electron microscopy analyses revealed that marigold-like structured ZnIn2S4 and layer-structured CuInS2 were dispersed on the reduced graphene oxide sheets. The ternary ZnIn2S4-rGO-CuInS2 system showed enhanced photocatalytic H2 production compared to pure ZnIn2S4, CuInS2, ZnIn2S4-rGO, CuInS2-rGO, and ZnIn2S4-CuInS2 catalysts under visible light illumination. The fabricated ZnIn2S4-rGO-CuInS2 catalyst afforded hydrogen generation of 2531 μmol/g after 5 h. The enhanced performance of the ZnIn2S4-rGO-CuInS2 catalyst originates from the synergetic effect with rGO as the electron transfer medium, and is confirmed by photocurrent density and photoluminescence measurements that indicate reduced recombination between the excited electron and hole pairs, and fast electron transfer in the ternary composite. The excellent performance of the ZnIn2S4-rGO-CuInS2 catalyst for up to three consecutive cycles was demonstrated in cyclic stability tests under visible-light illumination.Application of metal organic frameworks (MOFs) on sensors is of great interest for researchers. Film forming ability of the sensing material is very important for both the preparation process and sensing properties of the devices. https://www.selleckchem.com/products/e-7386.html Humidity sensors based on UIO-66 derived polyelectrolyte films were well prepared by in situ thiol-ene click cross-linking polymerization in this work. The hydrophilicity of the sensing film could be controlled by the feed ratios. The optimized humidity sensor shows a fast response to RHs change (Res/Rec time is 3.1 s/1.5 s, respectively) with ∼1.2% RH of humidity hysteresis. The water molecules adsorption behavior of the film and the sensing mechanism were also be investigated. The humidity sensor with good water and thermal stability and repeatability was applied in breath monitoring, which can well distinguish different breath states.Recent data show an interaction between COVID-19 and nicotine and indicate the need for an assessment of transdermal nicotine use in non-smokers. Assessments have been conducted into the short-term cognitive effects of nicotine and into diseases such as Parkinson's, Tourette syndrome, ADHD or ulcerative colitis. Analyses of nicotine administration protocols and safety were conducted after reviewing Medline and Science Direct databases performing a search using the words [transdermal nicotine] AND [non-smoker] AND selected diseases. Among 298 articles identified, there were 35 reviewed publications reporting on 33 studies of non-smokers receiving transdermal nicotine for >48hours. In the 16 randomized trials, 7 crossover, 1 case/control and 9 open studies patients received an initial nicotine dose of between 2.5mg and 15mg/day. In 22 studies, daily doses increased by 2 to 7 steps in 3 to 96 days until the dose was between 5mg and 105mg/day. The target nicotine dose was 19.06±20.89mg/day. The 987 non-smokers (534 never-smokers, 326 ex-smokers and 127 classified as "non-smokers") received or did not receive nicotine. The most common side-effects were nausea and skin itching. Forty-three (7.1%) non-smokers stopped treatment because of an adverse event of nicotine. No hospitalization related to nicotine side-effects were reported. Despite a relatively safe tolerance profile, transdermal nicotine therapy in non-smokers can only be used in clinical trials. There is a lack of formal assessment of the potential risk of developing a tobacco addiction. This review offers baseline data to set a transdermal nicotine protocol for non-smokers with a new purpose. Despite a relatively safe tolerance profile, transdermal nicotine therapy in non-smokers can only be used in clinical trials. There is a lack of formal assessment of the potential risk of developing a tobacco addiction. This review offers baseline data to set a transdermal nicotine protocol for non-smokers with a new purpose. To report a French experience in patients admitted to Intensive Care Unit (ICU) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requiring high fractional concentration of inspired oxygen supported by high flow nasal cannula (HFNC) as first-line therapy. Retrospective cohort study conducted in two ICUs of a French university hospital. All consecutive patients admitted during 28-days after the first admission for SARS-CoV-2 pneumonia were screened. Demographic, clinical, respiratory support, specific therapeutics, ICU length-of-stay and survival data were collected. Data of 43 patients were analyzed mainly men (72%), median age 61 (51-69) years, median body mass index of 28 (25-31) kg/m , median simplified acute physiology score (SAPS II) of 29 (22-37) and median PaO /fraction of inspired oxygen (FiO ) (P/F) ratio of 146 (100-189) mmHg. HFNC was initiated at ICU admission in 76% of patients. Median flow was 50 (45-50) L/min and median FiO2 was 0.6 (0.5-0.8). 79% of patients presented at least one comorbidity, mainly hypertension (58%).