Users can freely analyse and visualize genomic variations in heatmaps, phylogenetic trees, haplotype networks, or geographical maps. Sample-specific sequences can be accessed as replaced by detected sequence variations. Conclusions SnpHub can be applied to any species, and we build up a SnpHub portal website for wheat and its progenitors based on published data in recent studies. SnpHub and its tutorial are available at http//guoweilong.github.io/SnpHub/. The wheat-SnpHub-portal website can be accessed at http//wheat.cau.edu.cn/Wheat_SnpHub_Portal/.Patents for microbiology and biotechnology are generally for a process (for example DNA cloning; Cohen and Boyer 1980; and polymerase chain reaction, PCR; Mullis 1987) and not for the microbe itself. The patent for oil degrading bacteria (Chakrabarty 1981) was different in that it covered the modified microbial cell itself, a Pseudomonas strain with laboratory-assembled plasmids that encoded the bacterial degradation of multiple components of crude oil. It was first applied for in 1972, initially refused by the patent office on the basis that it was a living organism, and then 8 years later in June 1980 allowed by the US Supreme Court ruling that this did not matter and the only issue was whether it was a novel manufactured product.Phenotypic plasticity or genetic adaptation in an organism provides phenotypic changes when exposed to the extreme environmental conditions. The resultant physiological and metabolic changes greatly enhance the organism's potential for its survival in such harsh environments. In the present novel approach, we tested the hypothesis whether acid-adapted microalgae, initially isolated from non-acidophilic environments, can survive and grow in acid-mine-drainage (AMD) samples. Two acid-adapted microalgal strains, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, were tested individually or in combination (co-culture) for phenotypic changes during their growth in samples collected from AMD. The acid-adapted microalgae in AMD exhibited a two-fold increase in growth when compared with those grown at pH 3.5 in BBM up to 48 h and then declined. Furthermore, oxidative stress triggered several alterations such as increased cell size, granularity, and enhanced lipid accumulation in AMD-grown microalgae. Especially, the apparent limitation of phosphate in AMD inhibited the uptake of copper and iron in the cultures. Interestingly, growth of the acid-adapted microalgae in AMD downregulated amino acid metabolic pathways as a survival mechanism. This study demonstrates for the first time that acid-adapted microalgae can survive under extreme environmental conditions as exist in AMD by effecting significant phenotypic changes.Mammalian artificial chromosomes (MACs) are widely used as gene expression vectors and have various advantages over conventional expression vectors. We review and discuss breakthroughs in MAC construction, initiation of functional centromeres allowing their faithful inheritance, and transfer from cell culture to animal model systems. These advances have contributed to advancements in synthetic biology, biomedical research, and applications in industry and in the clinic.Kinetochores are instrumental for accurate chromosome segregation by binding to microtubules in order to move chromosomes and by delaying anaphase onset through the spindle assembly checkpoint (SAC). Dynamic phosphorylation of kinetochore components is key to control these activities and is tightly regulated by temporal and spatial recruitment of kinases and phosphoprotein phosphatases (PPPs). Here we focus on PP1, PP2A-B56 and PP2A-B55, three PPPs that are important regulators of mitosis. Despite the fact that these PPPs share a very similar active site, they target unique ser/thr phosphorylation sites to control kinetochore function. https://www.selleckchem.com/products/resatorvid.html Specificity is in part achieved by PPPs binding to short linear motifs (SLiMs) that guide their substrate specificity. SLiMs bind to conserved pockets on PPPs and are degenerate in nature, giving rise to a range of binding affinities. These SLiMs control the assembly of numerous substrate specifying complexes and their position and binding strength allow PPPs to target specific phosphorylation sites. In addition, the activity of PPPs is regulated by mitotic kinases and inhibitors, either directly at the activity level or through affecting PPP-SLiM interactions. Here, we discuss recent progress in understanding the regulation of PPP specificity and activity and how this controls kinetochore biology.Siglec-15 is a conserved sialic acid-binding Ig-like lectin expressed on osteoclast progenitors that plays an important role in osteoclast development and function. It is also expressed by tumor-associated macrophages and by some tumors, where it is thought to contribute to the immunosuppressive microenvironment. It was shown previously that engagement of macrophage-expressed Siglec-15 with tumor cells expressing its ligand, sialyl Tn (sTn), triggered production of TGF-β. In the present study, we have further investigated the interaction between Siglec-15 and sTn on tumor cells and its functional consequences. Based on binding assays with lung and breast cancer cell lines and glycan-modified cells, we failed to see evidence for recognition of sTn by Siglec-15. However, using a microarray of diverse, structurally-defined glycans, we show that Siglec-15 binds with higher avidity to sialylated glycans other than sTn or related antigen sequences. In addition, we were unable to demonstrate enhanced TGF-β secretion following co-culture of Siglec-15-expressing monocytic cells lines with tumor cells expressing sTn, or following Siglec-15 cross-linking with monoclonal antibodies. However, we did observe activation of the SYK/MAPK signaling pathway following antibody cross-linking of Siglec-15 that may modulate the functional activity of macrophages.Erythrocyte membrane is crucial to maintain the stability of erythrocyte structure. The membrane protein on the surface of erythrocyte membrane enables erythrocyte to have plasticity and pass through the microcirculation without being blocked or destroyed. Decreased deformability of erythrocyte membrane protein will lead to a series of pathological and physiological changes such as tissue and organ ischemia and hypoxia. Therefore, this research collected 30 cases of healthy blood donors, and explored erythrocyte stored at different times relating indicators including effective oxygen uptake (Q), P50, 2,3-DPG, Na+-k+-ATP. Erythrocyte morphology was observed by electron microscopy. Western blot and immunofluorescence assay were used to detect membrane protein EPB41, S1P, GLTP, SPPL2A expression changes of erythrocyte. To explore the effective carry oxygen capacity of erythrocyte at different storage time resulting in the expression change of erythrocyte surface membrane protein.