https://www.selleckchem.com/products/d-galactose.html Homogeneous graphene dispersions with tunable concentrations are fundamental prerequisites for the preparation of graphene-based materials. Here, a strategy for effectively dispersing graphene using graphene oxide (GO) to produce homogeneous, tunable, and ultrahigh concentration graphene dispersions (>150 mg mL-1 ) is proposed. The structure of GO with abundant edge-bound hydrophilic carboxyl groups and in-plane hydrophobic π-conjugated domains allows it to function as a special "surfactant" that enables graphene dispersion. In acidic solutions, GO sheets tend to form edge-to-edge hydrogen bonds and expose the π-conjugated regions which interact with graphene, thereby promoting graphene dispersion. While in alkaline solutions, GO sheets tend to stack in a surface-to-surface manner, thereby blocking the π-conjugated regions and impeding graphene dispersion. As the concentration of GO-dispersed graphene dispersion (GO/G) increases, a continuous transition between four states is obtained, including a dilute dispersion, a thick paste, a free-standing gel, and a kneadable, playdough-like material. Furthermore, GO/G can be applied to create desirable structures including highly conductive graphene films with excellent flexibility, thereby demonstrating an immense potential in flexible composite materials.Head motion is a major confounding factor impairing the quality of functional magnetic resonance imaging (fMRI) data. In particular, head motion can reduce analytical efficiency, and its effects are still present even after preprocessing. To examine the validity of motion removal and to evaluate the remaining effects of motion on the quality of the preprocessed fMRI data, a new metric of group quality control (QC), dissimilarity of functional connectivity, is introduced. Here, we investigate the association between head motion, represented by mean framewise displacement, and dissimilarity of functional connectivity by