https://www.selleckchem.com/products/rocilinostat-acy-1215.html In order to have further evidence of the atmospheric oscillation channel of the lithosphere-atmosphere-ionosphere coupling (LAIC), we have studied criticality in global navigation satellite system (GNSS) surface deformation as a possible agent for exciting atmospheric gravity waves (AGWs) in the atmosphere and GNSS fluctuations in the frequency range of AGWs with the use of the natural time (NT) method. The target earthquake (EQ) is the 2016 Kumamoto EQ with its main shock on 15 April 2016 (M = 7.3, universal time). As the result of the application of the NT method to GNSS data, we found that for the one-day sampled GNSS deformation data and its fluctuations in two AGW bands of 20-100 and 100-300 min, we could detect a criticality in the period of 1-14 April, which was one day to two weeks before the EQ. These dates of criticalities are likely to overlap with the time periods of previous results on clear AGW activity in the stratosphere and on the lower ionospheric perturbation. Hence, we suggest that the surface deformation could be a possible candidate for exciting those AGWs in the stratosphere, leading to the lower ionospheric perturbation, which lends further support to the AGW hypothesis of the LAIC process.In recent years, the concept of "shortcuts to adiabaticity" has been originally proposed to speed up sufficiently slow adiabatic process in various quantum systems without final excitation. Based on the analogy between classical optics and quantum mechanics, we present a study on fast non-adiabatic compression of optical beam propagation in nonlinear gradient refractive-index media by using shortcuts to adiabaticity. We first apply the variational approximation method in nonlinear optics to derive the auxiliary equation for connecting the beam width with the refractive index of the medium. Then, the gradient refractive index is inversely designed through the perfect compression of beam width wi