https://www.selleckchem.com/Proteasome.html In the last two decades, the use of diamond as a material for applications in nanophotonics, optomechanics, quantum information, and sensors tremendously increased due to its outstanding mechanical properties, wide optical transparency, and biocompatibility. This has been possible owing to advances in methods for growth of high-quality single crystal diamond (SCD), nanofabrication methods and controlled incorporation of optically active point defects (e.g., nitrogen vacancy centers) in SCD. This paper reviews the recent advances in SCD nano-structuring methods for realization of micro- and nano-structures. Novel fabrication methods are discussed and the different nano-structures realized for a wide range of applications are summarized. Moreover, the methods for color center incorporation in SCD and surface treatment methods to enhance their properties are described. Challenges in the upscaling of SCD nano-structure fabrication, their commercial applications and future prospects are discussed.Emotion recognition has drawn consistent attention from researchers recently. Although gesture modality plays an important role in expressing emotion, it is seldom considered in the field of emotion recognition. A key reason is the scarcity of labeled data containing 3D skeleton data. Some studies in action recognition have applied graph-based neural networks to explicitly model the spatial connection between joints. However, this method has not been considered in the field of gesture-based emotion recognition, so far. In this work, we applied a pose estimation based method to extract 3D skeleton coordinates for IEMOCAP database. We propose a self-attention enhanced spatial temporal graph convolutional network for skeleton-based emotion recognition, in which the spatial convolutional part models the skeletal structure of the body as a static graph, and the self-attention part dynamically constructs more connections between the joints a