Lipase is one of the most important enzymes playing a key role in many biological and chemical processes, in particular for fat hydrolysis in living systems and technological applications such as food production, medicine, and biodiesel production. As lipase is soluble in water, the major hydrolysis process occurs at the water-oil interface, where lipase can get in contact with the oil. To provide optimum conditions, the emulsification of the oil is essential to provide a large interfacial area which is generally done by adding surfactants. However, the presence of surfactants can influence the lipase activity and also cause competitive adsorption, resulting in a removal of lipase from the interface or its conformational changes in the solution bulk. Here we have studied the dynamics of competitive adsorption and interfacial elasticity of mixed solutions containing lipase and the anionic surfactant sodium dodecyl sulfate (SDS) or the cationic surfactant cetyltrimethylammonium bromide (CTAB), respectively, at results are in good correlation with the determined surface charges of the lipase gained by computational simulations which show a dominant negatively charged surface for lipase that can interact with the cationic CTAB while partial positively charged regions are observed for the interaction with the anionic SDS.Four noncovalently fused-ring electron acceptors p-DOC6-2F, o-DOC6-2F, o-DOC8-2F, and o-DOC2C6-2F have been designed and synthesized. p-DOC6-2F and o-DOC6-2F have the same molecular backbone but different molecular shapes and symmetries. p-DOC6-2F has an S-shaped molecular backbone and C2 h symmetry, whereas o-DOC6-2F possesses a U-shaped molecular backbone and C2v symmetry. The molecular shape and symmetry can influence the dipole moment, solubility, optical absorption, energy level, molecular packing, and film morphology. Compared with the corresponding p-DOC6-2F, o-DOC6-2F exhibits better solubility, a wider band gap, and a larger dipole moment. When blended with the donor polymer PBDB-T, the C2v symmetric o-DOC6-2F can form an appropriate active layer morphology, whereas the C2h symmetric p-DOC6-2F forms oversized domains. Organic solar cells (OSCs) based on p-DOC6-2F, o-DOC6-2F, o-DOC8-2F, and o-DOC2C6-2F obtained power conversion efficiencies of 9.23, 11.87, 11.23, and 10.80%, respectively. The result reveals that the molecular symmetry can facilely regulate the performance of OSCs.Flexible pressure sensors that can robustly mimic the function of slow-adapting type I (SA-I) mechanoreceptors are essential for realizing human-like object manipulation in artificial intelligent (AI) robots or amputees. Here, we report a straightforward approach to highly sensitive and robust flexible pressure sensors with fast response time and low operating voltage based on conductive micropyramids made of polydimethylsiloxane/carbon nanotube composites. Both numerical simulations and experimental studies show that the pressure-sensing properties of the devices can be systematically tuned by the spatial arrangement of micropyramids. In particular, by tailoring the ratio between the spacing and the pyramidal base length, the optimal pressure sensors can be achieved with a combination of high sensitivity in both low-pressure ( less then 10 kPa) and medium-pressure (10-100 kPa) regimes, rapid response, high mechanical robustness, low operating voltage, and low power consumption, along with linear response and low hysteresis in the medium-pressure regimes. The optimized pressure sensor is further used for constructing a wearable pressure-sensing system that can convert the amplitude of pressure to wirelessly transmittable frequency signals (spikes) with nearly linear response, closely mimicking SA-I mechanoreceptors. Furthermore, we demonstrate that the high uniformity and scalability of the pressure sensors enable large-area pressure-sensing arrays for spatially resolved pressure mapping.A facile synthesis of various 3-(alkoxyalkyl)-1H-indoles from pyrazolidinones, 2-acetylenic ketones, and alkyl alcohols via C-H/C-C bond activation has been developed. The reaction proceeds smoothly under the proper reaction conditions, and preliminary mechanistic studies suggest that NaOAc is crucial for C-C bond activation. The advantages of the present method represent a redox-neutral process and exhibit excellent chemo and regioselectivity.Under radiative environments such as extended hard X- or γ-rays, degradation of scintillation performance is often due to irradiation-induced defects. To overcome the effect of deleterious defects, novel design mitigation strategies are needed to identify and design more resilient materials. The potential for band-edge engineering to eliminate the effect of radiation-induced defect states in rare-earth-doped perovskite scintillators is explored, taking Ce3+-doped LuAlO3 as a model material system, using density functional theory (DFT)-based DFT + U and hybrid Heyd-Scuseria-Ernzerhof (HSE) calculations. From spin-polarized hybrid HSE calculations, the Ce3+ activator ground-state 4f position is determined to be 2.81 eV above the valence band maximum in LuAlO3. Except for the oxygen vacancies which have a deep level inside the band gap, all other radiation-induced defects in LuAlO3 have shallow defect states or are outside the band gap, that is, relatively far away from either the 5d1 or the 4f Ce3+ levels. Finally, we examine the role of Ga doping at the Al site and found that LuGaO3 has a band gap that is more than 2 eV smaller than that of LuAlO3. Specifically, the lowered conduction band edge envelopes the defect gap states, eliminating their potential impact on scintillation performance and providing direct theoretical evidence for how band-edge engineering could be applied to rare-earth-doped perovskite scintillators.This research work aims to explore the development of functional nanocellulose-based biolubricants, which allow for an electro-active control of the friction behavior. https://www.selleckchem.com/products/cc-90011.html With this purpose, the influence of both nanocellulose concentration and electric field strength on the lubricant's electrorheological behavior was analyzed. Electric field strengths up to 4 kV/mm were imposed and two different kinds of nanocellulose were studied as the polarizable particulate phase cellulose nanofibers (CNFs) and cellulose nanocrystals (CNCs). Nanocellulose particles were added to castor oil at weight fractions ranging from 0 to 6 wt %. All dispersions exhibited a noticeable variation in their dielectric constant, but not in their conductivity, within a wide frequency range between 1 Hz and 200 kHz, and their dielectric behavior was significantly affected by the particle weight fraction. Noteworthily, it was found that the critical value of nanocellulose concentration, 4 wt %, at which the electro-viscous effect displayed by these dispersions was constrained, yielding a limiting electrorheological (ER) behavior.