https://www.selleckchem.com/products/azd1390.html 0001), MFC (P  less then  .0001), and trochlea (P = .0002). Cartilage thickness was different between ROIs within the LFC, MFC, and trochlea (all P  less then  .0001). The LFC (P = .002) and trochlea (P = .01) each had significant differences in GAG between ROIs. Collagen content between ROIs was different within the LFC (P = .0003), MFC (P = .0005), and trochlea (P  less then  .0001). Collagen content was correlated with thickness (r = -.55), percent creep (r = .47), and GAG (r = -.21). Percent creep was correlated with thickness (r = -.64) and GAG (r = -.19). Topographic variations in mechanical, morphological, and biochemical properties exist across knee cartilage surfaces in sheep. Recognition of this variability is important to optimize study protocols and improve accuracy of results. Inhibition of monocarboxylate transport 1 (MCT1) is of interest in targeting highly glycolytic tumours. However, MCT1 is expressed in retina, and so inhibition of MCT1 could affect retinal function. AZD3965, an MCT1 inhibitor selected for clinical development, and two additional MCT1 inhibitors were evaluated for effects on visual acuity in albino (Han Wistar) rats. The effects of AZD3965 on visual acuity and electroretinography (ERG) were further investigated in pigmented (Long-Evans) rats, with dosing for up to 7 days. All three MCT1 inhibitors reduced visual acuity within 2 h of dosing, suggesting a class effect. The deficit caused by AZD3965 (1,000 mg·kg p.o. per day for 4 days) in Long Evans rats recovered to pre-dose levels 7 days after cessation of dosing. AZD3965 (50 to 1,000 mg·kg p.o.) reduced the amplitude of scotopic a- and b-waves, and photopic b-wave of the ERG in a dose-related fashion, within 2 h of dosing. The effects on the scotopic ERG had diminished by Day 7 of dosing, demonstrating partial restoration of function despite continued treatment. Seven days after cessation of dosing at the highest dose tested (1,000